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The photosensitive chlorine dioxide–iodine–malonic acid reaction-diffusion system has been an experimen-
tal paradigm for the study of Turing pattern over the last several years. When subjected to illumination of
varied intensity by visible light the patterns undergo changes from spots to stripes, vice versa, and their
mixture. We carry out a nonlinear analysis of the underlying model in terms of a Galerkin scheme with finite
number of modes to explore the nature of the stability and existence of various modes responsible for the type
and crossover of the light-induced patterns.
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I. INTRODUCTION

Pattern formation in complex biological, chemical, and
hydrodynamical systems under far from equilibrium condi-
tion has been a major issue in the field of spatially extended
dynamical systems �1–6�. Turing pattern �3,5,6� occupies a
central place in its early development. More than half a cen-
tury ago Turing showed how the interplay of reaction and
diffusion of two chemical components under suitable condi-
tions may lead to a symmetry-breaking instability of a ho-
mogeneous steady state, initiating spontaneous stationary
patterns. The first unambiguous experimental evidence for
convection-free Turing pattern �7� was reported in a thermo-
dynamically open chemical system in the chlorite-iodide-
malonic acid �CIMA� reaction. Since then considerable
progress has been made in the experimental and theoretical
studies of Turing patterns in this system and its variant
�8–10�, the chlorine dioxide–iodine–malonic acid �CDIMA�
reaction �11�.

The Turing instability is a diffusion-driven instability,
which owes its origin to a competition between short-range
activation and long-range inhibition of the two reacting com-
ponents. Since this is intrinsic to kinetic and diffusive char-
acteristics of the dynamical system, in question, it is difficult
to manipulate the nature and type of spatial patterns. This
difficulty may, however, be overcome in some cases by ap-
propriate use of external forcing by electric and/or magnetic
field, light, or suitable noise �12–34�. For example, an elec-
tric field �12–17� may affect mass transport in reaction-
diffusion systems with ionic components, resulting in a
symmetry-breaking instability leading to formation of sta-
tionary spatial structures or displaying varied wave-front
characteristics under suitable condition. Turing-type but non-
stationary patterns can be observed in polymerization reac-
tion in acrylamide-methylene-blue-sulphide-oxygen systems
�26,27� under the influence of light and electric field. Later
on the methylene blue system has been further studied by
Mueller and co-workers �23� to investigate pattern formation
in relation to chemomechanical coupling. Spatial reorganiza-

tion �35,36� has also been observed in one of the most thor-
oughly studied systems, the photosensitive Belousov-
Zhabotinsky reaction under periodic illumination. Apart from
these, noise �28–34� in both additive and multiplicative
forms as well as magnetic field �18,19� have been used for
inducing instabilities to generate spatial patterns in reaction-
diffusion systems. A major emphasis in these studies, in gen-
eral, is the exploration of a new instability condition arising
out of linear stability analysis. However, several aspects re-
main outside the scope of linear theory. First, the nonlinear-
ity in the dynamics leads to saturation of exponential growth
of the unstable mode. Second, since the principle of super-
position is not applicable, the nonlinearity may select differ-
ent symmetry-adapted combinations which grow in almost
competitive time scales. This results in a wide variation in
the type of patterns, examples being spots, stripes, and their
combinations. Under appropriate experimental conditions
these patterns may undergo interesting crossover among
themselves. The CDIMA reaction-diffusion system offers it-
self as an excellent candidate for study in this context. Be-
cause of its photosensitivity �20–22,25� the reaction is sub-
jected to illumination by visible light, and depending on the
intensity of illumination varied types of spatial patterns in
the form of spots, stripes, and their mixture can be realized.
At higher intensities the patterns are eliminated completely.
Based on this experimental background it is worthwhile to
understand the type of light-induced patterns and their cross-
overs. A straightforward approach to this problem is to carry
out direct numerical simulations of the partial differential
equations for the underlying Lengyel-Epstein model describ-
ing the CDIMA reaction-diffusion system. However, this
does not throw any light on how nonlinearity gives rise to
mode selection relevant for specific patterns. Since analytical
solutions of the partial differential equations are practically
impossible, one takes resort primarily to two analytical tech-
niques. First, the method of amplitude equation, which can
be profitably employed for weakly nonlinear systems when
the spatial and temporal modulations of the basic mode are
relatively slow in nature. Second one refers to Galerkin tech-
nique which involves an effective replacement of the partial
differential equations for the reaction-diffusion system by a
set of coupled ordinary differential equations for a few se-*pcdsr@iacs.res.in
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lected modes. The classic example of using this method is
the derivation of Lorenz equations for turbulence obtained
from Navier-Stokes equation in hydrodynamical context. A
few years back the method has been employed in the prob-
lem of pattern formation and bifurcation analysis in Geirer-
Meinhardt system �37�. Marchant and co-worker �24� have
considered the method for the self-replication scheme of
Gray and Scott �4� to develop semianalytic technique for
bifurcation analysis. Based on a finite mode Galerkin scheme
we make a systematic nonlinear analysis of the reaction-
diffusion system. Our aim is threefold:

�i� To envisage a Lorenz-type model for the CDIMA
reaction-diffusion system.

�ii� How and to what extent this minimal Galerkin model
can capture a specific class of selected modes responsible for
patterns in the CDIMA system under a given set of param-
eter values. Furthermore, our objective is to understand how
the variation in illumination intensity influences the type of
patterns, transition between them, and their disappearance.

�iii� To identify and examine the conspicuous behavior of
any mode�s� responsible for crossover between different
types of patterns.

II. GALERKIN ANALYSIS OF THE CDIMA SYSTEM

To begin with we consider the reaction-diffusion equa-
tions �9,10,20–22,25� governing the chlorine dioxide–
iodine–malonic acid reaction as given by

�u

�t
= a − u −

4uv
1 + u2 − � + �2u , �2.1�

�v
�t

= ��b�u −
uv

1 + u2 + �� + d�2v� . �2.2�

Here “u” and “v” are dimensionless concentrations of I− and
�ClO2�−, respectively. They are dimensionless parameters. a
and b are related to kinetic parameters, and are proportional
to the concentration ratios �CH2�COOH�2� / �ClO2� and
�I2� / �ClO2�, respectively, where �ClO2�, �I2�, and
�CH2�COOH�2� are in large excess. For further details we
refer to Ref. �3�. d denotes the ratio of the diffusion coeffi-
cients, d= �DClO2

� / �DI−�. � refers to the concentration of
starch which forms a complex with I3

− such that �=1+K�S�.

Here K is the equilibrium constant for the starch-iodide com-
plex and �S� is the concentration of starch tri-iodide binding
sites. � refers to the dimensionless rate of photochemical
reaction which is proportional to the light intensity.

It is well known from the linear stability analysis
�20–22,25� of the system that by varying the concentration of
complexing agent ��� one can adjust the Hopf bifurcation
line in the b-a parameter plane in such a way that it lies
below the Turing bifurcation line which is independent of �,
and the region of existence of Turing pattern can be realized.
Figure 1�a� depicts such a region of instability. Introduction
of intensity of visible light through � gives a useful handle
for further manipulation of the Turing space. Illumination of
the CDIMA system affects both Hopf and Turing lines. By
fixing “a” at an appropriate level both these lines can be
suitably adjusted in b-� plane so that the width of the Turing
region can be widened or reduced. This is illustrated in Fig.
1�b�. In conformity with this linear analysis we set the pa-
rameter values for the present problem as a=18.0, b=1.5,
�=9.0, d=1.6, and k=0.1.

While the linear analysis as summarized above allows us
to identity the Hopf-Turing instability regimes in the param-
eter space, it does not give any clue in understanding the
type of patterns and their crossovers as the illumination in-
tensity � is varied. To address this issue we take resort to
nonlinear analysis of the reaction-diffusion system �Eqs.
�2.1� and �2.2�� with the help of Galerkin transformation
�35,36,38,39�. The idea is to understand the nonlinear inter-
action of a finite number of judiciously chosen modes in a
Lorenz-type model. This can be achieved by approximating
the two exact concentration variables u and v by a series of
orthogonal basis functions. These basis functions represent
the spatial structure of the concentration profile whereas the
combining coefficients determine the relative weight of the
profile. The dynamics of reaction-diffusion system thus re-
duces to nonlinear dynamics of these finite number coeffi-
cients or modes. The specificity of the nature of nonlinear
interaction is expected to capture the type of spatial patterns
and their crossovers.

For analysis of spots and stripes we choose specifically
the following forms of expansions

u�x,y,t� = u0�t� + u12�t�cos k1x cos k2y , �2.3�

FIG. 1. Domain of Turing pat-
terns in b vs a and b vs � param-
eter spaces, for �a� �=9.0 and �
=0.0, and �b� �=9.0 and a=18.0.
The dashed line and the solid line
represent the Turing and the Hopf
lines, respectively.
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v�x,y,t� = v0�t� + v1�t�cos k1x + v2�t�cos k2y

+ v12�t�cos k1x cos k2y . �2.4�

The above choice is guided by the following consideration.
For the homogeneous state, we must have u12=v1=v2=v12

=0. For u12=v12=v2=0 we are likely to have stripes in x
direction �nodes appear only in this direction� while for u12

=v12=v1=0 we expect stripes in y direction �nodes appear
only in this direction�. For v1=v2=0 nodes are expected to
appear in both x and y directions giving rise to spot patterns
since nodes in the concentration profile can appear in both
directions.

By inserting expansions �2.3� and �2.4� in Eqs. �2.1� and
�2.2� with k1=k2=k �say� and equating the coefficients of
Fourier terms of both sides, we obtain the following set of
equations for six coupled modes after a series of algebraic
steps

u̇0 = a − u0 −
4

1 + u0
2��u0v0 +

u12v12

4
��1 −

u12
2

4�1 + u0
2�
�

−
u0u12

2�1 + u0
2�

�u0v12 + u12v0� −
5u12

3 v12

64�1 + u0
2�� − � , �2.5�

u̇12 = − u12 −
4

1 + u0
2��u0v12 + u12v0��1 −

u12
2

4�1 + u0
2�
�

−
5u12

2

16�1 + u0
2�

�u0v12 + u12v0� −
2u0u12

�1 + u0
2�
�u0v0 +

u12v12

4
�

−
5u0u12

2 v12

8�1 + u0
2� � − 2k2u12, �2.6�

v̇0 = �b�u0 −
1

1 + u0
2	�u0v0 +

u12v12

4
��1 −

u12
2

4�1 + u0
2�
�

−
u0u12

2�1 + u0
2�

�u0v12 + u12v0� −
5u12

3 v12

64�1 + u0
2�
 + �� ,

�2.7�

v̇1 = �b�−
1

1 + u0
2	�u0v1 +

u12v2

2
��1 −

u12
2

4�1 + u0
2�
�

−
u12

2

8�1 + u0
2�
�u0v1 +

u12v2

2
� −

3u12
3 v2

32�1 + u0
2�

−
u0u12

�1 + u0
2�
�u0v2 +

u12v1

2
� −

u0u12
2 v1

4�1 + u0
2�
� − �dk2v1,

�2.8�

v̇2 = �b�−
1

1 + u0
2	�u0v2 +

u12v1

2
��1 −

u12
2

4�1 + u0
2�
�

−
u12

2

8�1 + u0
2�
�u0v2 +

u12v1

2
� −

3u12
3 v1

32�1 + u0
2�

−
u0u12

�1 + u0
2�
�u0v1 +

u12v2

2
� −

u0u12
2 v2

4�1 + u0
2�
� − �dk2v2,

�2.9�

v̇12 = �b�u12 −
1

1 + u0
2	�u0v12 + u12v0��1 −

u12
2

4�1 + u0
2�
�

−
5u12

2

16�1 + u0
2�

�u0v12 + u12v0� −
2u0u12

�1 + u0
2�
�u0v0 +

u12v12

4
�

−
5u0u12

2 v12

8�1 + u0
2� 
� − 2�dk2v12. �2.10�

The dynamical equations for stripes in x direction are ob-
tained by setting u12=v12=v2=0 so that we have

�u0

�t
= a − u0 −

4u0v0

�1 + u0
2�

− � , �2.11�

�v0

�t
= �b�u0 −

u0v0

�1 + u0
2�

+ �� , �2.12�

�v1

�t
= − �� bu0

�1 + u0
2�

+ dk2�v1. �2.13�

Equations �2.11�–�2.13� suggest that the mode responsible
for stripe formation, i.e., v1, is dependent on the dynamics of
homogeneous modes. This dependence can be made more
explicit by integrating Eq. �2.13� formally for v1 so that we
have

v1�t� = v1�0�exp���
0

t 	− � bu0�t�
�1 + u0

2�t��
+ dk2�dt
� .

�2.14�

As the growth of inhomogeneity or its suppression depends
critically on the sign of the integral in Eq. �2.14�, we show in
Fig. 2 the variation in the integral calculated in the long-time
limit as a function of �, the illumination intensity. At a criti-
cal value of �=3.7 the integral changes its sign from nega-
tive to positive value sharply and one may realize a signifi-
cant region of positive values of integral approximately in
the range �=3.7–4.3. The region of positive values of the
integral corresponds to the growth of v1 signifying the for-
mation of stripes. This crossover behavior makes an imprint
in the variation in steady-state values of v0 �i.e., v0s=a�1
+u0s

2 � / �5u0s� where u0s= �a /5−�� as a function of ��. We
observe a divergence of v0s at around �=3.6 shown in Fig.
3. The consequence of this divergent behavior of v0s is ap-
parent in the numerical simulation which is presented in the
latter part of the paper. It is also important to note that the
forms of expansion of u and v remain invariant with respect
to an interchange in x and y �k1=k2=k�. This symmetry
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therefore ensures that stripe along y direction is equally
probable as that in x direction provided the choice of nonzero
modes are u0, v0, and v2. We thus expect stripes whose com-
ponents lie both in x and y directions.

We now proceed with the dynamical equations for spot
patterns. To this end we set v1=v2=0 to obtain four-mode
equations as follows:

u̇0 = a − u0 −
4

1 + u0
2��u0v0 +

u12v12

4
��1 −

u12
2

4�1 + u0
2�
�

−
u0u12

2�1 + u0
2�

�u0v12 + u12v0� −
5u12

3 v12

64�1 + u0
2�� − � ,

�2.15�

v̇0 = �b�u0 −
1

1 + u0
2	�u0v0 +

u12v12

4
��1 −

u12
2

4�1 + u0
2�
�

−
u0u12

2�1 + u0
2�

�u0v12 + u12v0� −
5u12

3 v12

64�1 + u0
2�
 + �� ,

�2.16�

u̇12 = − u12 −
4

1 + u0
2��u0v12 + u12v0��1 −

u12
2

4�1 + u0
2�
�

−
5u12

2

16�1 + u0
2�

�u0v12 + u12v0� −
2u0u12

�1 + u0
2�
�u0v0 +

u12v12

4
�

−
5u0u12

2 v12

8�1 + u0
2� � − 2k2u12, �2.17�

v̇12 = �b�u12 −
1

1 + u0
2	�u0v12 + u12v0��1 −

u12
2

4�1 + u0
2�
�

−
5u12

2

16�1 + u0
2�

�u0v12 + u12v0� −
2u0u12

�1 + u0
2�
�u0v0 +

u12v12

4
�

−
5u0u12

2 v12

8�1 + u0
2� 
� − 2�dk2v12. �2.18�

The steady-state values of the spot-mode equations u0s, v0s,
u12s, and v12s can be obtained numerically. In order to corre-
late the present analysis with the earlier one we now make a
linear stability analysis around this steady state and observe
the following points.

�i� For the range of � between 0.0 and 3.6, all the eigen-
values of the stability matrix for the spot-mode equations are
negative, implying that the spot state is stable in this region
of � values. This is also complementary to the earlier obser-
vation in Fig. 2 ensuring suppression of v1 mode for stripe-
mode equation in this region. The negativity of the eigenval-
ues is demonstrated in Fig. 4 in which the largest eigenvalues
have been plotted as a function of �.

�ii� Beyond �=3.6 the spot steady state becomes unstable
since one or more eigenvalues assume positive values. This
corresponds to a dynamic changeover of the type of pattern.

�iii� Again for a higher range of � values around 4.4–4.5,
the spot state becomes stable.

III. NUMERICAL SIMULATIONS AND DISCUSSIONS

In order to corroborate the above Galerkin analysis with
numerical simulations, we carry out numerical integration of

0 1 2 3 4 5 6 7 8 9 10

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

Int

�

FIG. 2. Variation in integral in Eq. �2.14� as a function of �, the
illumination intensity for the given set of parameter values as men-
tioned in the text.

FIG. 3. Variation in v0s, the steady-state values of stripe-mode
Eqs. �2.11� and �2.12� as a function of �, the illumination intensity
for the given set of parameter values as mentioned in the text.

FIG. 4. The plot of largest eigenvalue of the linearized set of
equations for the spot-mode Eqs. �2.15�–�2.18� as a function of �
for the set of parameter values mentioned in the text.
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Eqs. �2.1� and �2.2� in a two-dimensional space. The param-
eter set chosen for numerical simulation is a=18.0, b=1.5,
d=1.6, and �=9.0. We use the explicit Euler method for
integration of the partial differential equations following dis-
cretization of space and time. A finite system size of 100
�100 points with zero flux boundary conditions has been
chosen. A time interval �t=0.0005 and a cell size �x=�y
=1.0 have been found to be appropriate for this purpose.
Turing patterns have been generated by varying illumination
intensity � at a fixed initial condition b. The result is shown
in Fig. 5. When � is gradually increased from zero, the Tur-
ing pattern changes from spot to spot-stripe arrangement and
then to stripes. On further increase in � one obtains stripe-
spot arrangements which change over to spot. Finally at a
high value of � the inhomogeneity disappears altogether cor-
roborating earlier experimental observation �22�. Schemati-
cally in Fig. 6, the crossover of the nature of patterns as
determined and scaled numerically can be compared to that
inferred from earlier Galerkin analysis.

In the Galerkin study of the CDIMA reaction we have
analyzed the nature of spatial patterns and their transition
from spots to stripes and reverse due to the variation in illu-
mination intensity. The analysis shows that for low intensity
the � values for which the spot patterns prevail agree very
well to the corresponding range for numerical simulations.

The agreement is almost quantitative. However, for higher
illumination intensity, the transition of pattern types from
spot to stripe and back to spot corroborates the range of �
values for numerical simulations well within 5% when com-
pared to the results obtained from Galerkin scheme. For very
high � values the nonlinear interaction becomes too severe
and one has to consider the excitation of higher harmonic
nodes. Thus a four-mode description of spots or a three-
mode description of stripes begins to loose its validity. One
may, however, take care of larger number of basis functions
comprising the contribution of the higher harmonics in addi-
tion to the fundamental modes considered for further im-
provement of the scheme.

A few remarks on the advantage and efficacy of the Galer-
kin scheme may be in order. It has already been pointed out
that amplitude equation technique �1,40� concerns the enve-
lope function of a basic state, and relies on separability of the
time scales of the fast and slow modes. It is then possible to
eliminate the fast modes which adiabatically follow the slow
modes for studying instability in the dynamics. The Galerkin
scheme on the other hand, is based on the expansion of the
concentration variables in terms of a series of orthogonal
basis functions. One can exercise the flexibility by choosing
even orthogonal polynomials as basis functions instead of
trigonometric functions as employed. Furthermore, no a pri-
ori separation of time scales of evolution of modes is neces-
sary and all of them are treated on equal footing. Thus in the
description of spots and stripes all the four and three modes
make their presence felt in the dynamics. Finally a decisive
advantage of the scheme in contrast to amplitude equation
technique is its extended region of validity beyond near-
threshold regime.

IV. CONCLUSION

The Turing instability resulting in initiation of pattern for-
mation is based on linear analysis. However this is always
limited by the fact that it is not equipped to deal with the
nature of patterns and their crossovers with the variation in
parameter space beyond near-threshold regime. One has to
go beyond the linear analysis and account for the nonlinear
interactions in greater detail. Any analytical treatment is
therefore bound to pose considerable difficulty in dealing
with this situation. The present treatment relies on the Galer-
kin technique to analyze a prototypical reaction-diffusion
system, CDIMA, which has served as an experimental para-
digm for the last two decades. The basic idea is to replace the
nonlinear partial differential equations by a set of Lorenz-
type ordinary nonlinear differential equations for a few cho-
sen modes. Interesting features of nonlinear dynamics
emerge when the number of modes is kept at least three. Our
results can be summarized as follows:

�i� We have theoretically analyzed the light-induced Tur-
ing patterns and their transition behavior in the chlorine
dioxide–iodine–malonic acid system observed by variation
in illumination intensity.

�ii� The spot and stripe patterns and their stability can be
understood in terms of nonlinear dynamical behavior of a
few chosen modes responsible for the specific type of pattern
selection.

FIG. 5. Turing patterns for different � values, the illumination
intensity for the set of parameter values as mentioned in the text.

FIG. 6. A comparison between Galerkin and numerical
scheme.
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�iii� The approach emphasizes the conspicuous role of ho-
mogeneous mode in relation to other inhomogeneous modes
in pattern selection.

�iv� The scope and validity of the present nonlinear analy-
sis extends beyond near-threshold regime.

The Galerkin model is in good agreement with the full-
scale numerical simulations and experiments with constant
illumination of light intensity. We hope that the method can

be extended further to explore the resonant behavior of spa-
tial patterns in presence of periodic and noisy variations in
intensity and other related issues.
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